ref: c151f95b68a8500612a49768cec1648c02562779
dir: /src/scopes/ft2_scope_macros.h/
#ifndef _ft2_scope_macros_h_ #define _ft2_scope_macros_h_ #include <stdint.h> #include "../ft2_header.h" #include "ft2_scopes.h" /* ----------------------------------------------------------------------- */ /* SCOPE DRAWING MACROS */ /* ----------------------------------------------------------------------- */ #define SCOPE_INIT \ const uint32_t color = video.palette[PAL_PATTEXT]; \ uint32_t width = x + w; \ int32_t sample; \ int32_t position = s->position; \ uint64_t positionFrac = 0; #define SCOPE_INIT_BIDI \ const uint32_t color = video.palette[PAL_PATTEXT]; \ uint32_t width = x + w; \ int32_t sample; \ int32_t actualPos, position = s->position; \ uint64_t positionFrac = 0; \ bool samplingBackwards = s->samplingBackwards; #define LINED_SCOPE_INIT \ SCOPE_INIT \ int32_t smpY1, smpY2; \ width--; #define LINED_SCOPE_INIT_BIDI \ SCOPE_INIT_BIDI \ int32_t smpY1, smpY2; \ width--; /* Note: Sample data already has fixed tap samples at the end of the sample, ** so that out-of-bounds reads get the correct interpolation tap data. */ #define NEAREST_NEIGHGBOR8 \ { \ sample = s8[0] << 8; \ } \ #define LINEAR_INTERPOLATION8(frac) \ { \ const int32_t f = (frac) >> (SCOPE_FRAC_BITS-15); \ sample = (s8[0] << 8) + ((((s8[1] - s8[0]) << 8) * f) >> 15); \ } \ #define NEAREST_NEIGHGBOR16 \ { \ sample = s16[0]; \ } \ #define LINEAR_INTERPOLATION16(frac) \ { \ const int32_t f = (frac) >> (SCOPE_FRAC_BITS-15); \ sample = s16[0] + (((s16[1] - s16[0]) * f) >> 15); \ } \ #define CUBIC_SMP8(frac) \ const int16_t *t = scopeIntrpLUT + (((frac) >> (SCOPE_FRAC_BITS-SCOPE_INTRP_PHASES_BITS)) << SCOPE_INTRP_WIDTH_BITS); \ \ sample = ((s8[-1] * t[0]) + \ ( s8[0] * t[1]) + \ ( s8[1] * t[2]) + \ ( s8[2] * t[3])) >> (SCOPE_INTRP_SCALE_BITS-8); #define CUBIC_SMP16(frac) \ const int16_t *t = scopeIntrpLUT + (((frac) >> (SCOPE_FRAC_BITS-SCOPE_INTRP_PHASES_BITS)) << SCOPE_INTRP_WIDTH_BITS); \ \ sample = ((s16[-1] * t[0]) + \ ( s16[0] * t[1]) + \ ( s16[1] * t[2]) + \ ( s16[2] * t[3])) >> SCOPE_INTRP_SCALE_BITS; #define CUBIC_INTERPOLATION8(frac) \ { \ CUBIC_SMP8(frac) \ } \ #define CUBIC_INTERPOLATION16(frac) \ { \ CUBIC_SMP16(frac) \ } \ #define CUBIC_INTERPOLATION8_LOOP(pos, frac) \ { \ if (s->hasLooped && pos <= s->loopStart+MAX_LEFT_TAPS) \ s8 = s->leftEdgeTaps8 + (pos - s->loopStart); \ \ CUBIC_SMP8(frac) \ } \ #define CUBIC_INTERPOLATION16_LOOP(pos, frac) \ { \ if (s->hasLooped && pos <= s->loopStart+MAX_LEFT_TAPS) \ s16 = s->leftEdgeTaps16 + (pos - s->loopStart); \ \ CUBIC_SMP16(frac) \ } \ #define INTERPOLATE_SMP8(pos, frac) \ const int8_t *s8 = s->base8 + pos; \ if (config.interpolation == INTERPOLATION_DISABLED) \ NEAREST_NEIGHGBOR8 \ else if (config.interpolation == INTERPOLATION_LINEAR) \ LINEAR_INTERPOLATION8(frac) \ else \ CUBIC_INTERPOLATION8(frac) \ sample = (sample * s->volume) >> (16+2); #define INTERPOLATE_SMP16(pos, frac) \ const int16_t *s16 = s->base16 + pos; \ if (config.interpolation == INTERPOLATION_DISABLED) \ NEAREST_NEIGHGBOR16 \ else if (config.interpolation == INTERPOLATION_LINEAR) \ LINEAR_INTERPOLATION16(frac) \ else \ CUBIC_INTERPOLATION16(frac) \ sample = (sample * s->volume) >> (16+2); #define INTERPOLATE_SMP8_LOOP(pos, frac) \ const int8_t *s8 = s->base8 + pos; \ if (config.interpolation == INTERPOLATION_DISABLED) \ NEAREST_NEIGHGBOR8 \ else if (config.interpolation == INTERPOLATION_LINEAR) \ LINEAR_INTERPOLATION8(frac) \ else \ CUBIC_INTERPOLATION8_LOOP(pos, frac) \ sample = (sample * s->volume) >> (16+2); #define INTERPOLATE_SMP16_LOOP(pos, frac) \ const int16_t *s16 = s->base16 + pos; \ if (config.interpolation == INTERPOLATION_DISABLED) \ NEAREST_NEIGHGBOR16 \ else if (config.interpolation == INTERPOLATION_LINEAR) \ LINEAR_INTERPOLATION16(frac) \ else \ CUBIC_INTERPOLATION16_LOOP(pos, frac) \ sample = (sample * s->volume) >> (16+2); #define SCOPE_GET_SMP8 \ if (s->active) \ sample = (s->base8[position] * s->volume) >> (8+2); \ else \ sample = 0; #define SCOPE_GET_SMP16 \ if (s->active) \ sample = (s->base16[position] * s->volume) >> (16+2); \ else \ sample = 0; #define SCOPE_GET_SMP8_BIDI \ if (s->active) \ { \ GET_BIDI_POSITION \ sample = (s->base8[actualPos] * s->volume) >> (8+2); \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_SMP16_BIDI \ if (s->active) \ { \ GET_BIDI_POSITION \ sample = (s->base16[actualPos] * s->volume) >> (16+2); \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_INTERPOLATED_SMP8 \ if (s->active) \ { \ INTERPOLATE_SMP8(position, (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_INTERPOLATED_SMP16 \ if (s->active) \ { \ INTERPOLATE_SMP16(position, (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_INTERPOLATED_SMP8_LOOP \ if (s->active) \ { \ INTERPOLATE_SMP8_LOOP(position, (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_INTERPOLATED_SMP16_LOOP \ if (s->active) \ { \ INTERPOLATE_SMP16_LOOP(position, (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define GET_BIDI_POSITION \ if (samplingBackwards) \ actualPos = (s->sampleEnd - 1) - (position - s->loopStart); \ else \ actualPos = position; #define SCOPE_GET_INTERPOLATED_SMP8_BIDI \ if (s->active) \ { \ GET_BIDI_POSITION \ INTERPOLATE_SMP8_LOOP(actualPos, samplingBackwards ? ((uint32_t)positionFrac ^ UINT32_MAX) : (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define SCOPE_GET_INTERPOLATED_SMP16_BIDI \ if (s->active) \ { \ GET_BIDI_POSITION \ INTERPOLATE_SMP16_LOOP(actualPos, samplingBackwards ? ((uint32_t)positionFrac ^ UINT32_MAX) : (uint32_t)positionFrac) \ } \ else \ { \ sample = 0; \ } #define SCOPE_UPDATE_READPOS \ positionFrac += s->drawDelta; \ position += positionFrac >> 32; \ positionFrac &= UINT32_MAX; #define SCOPE_DRAW_SMP \ video.frameBuffer[((lineY - sample) * SCREEN_W) + x] = color; #define LINED_SCOPE_PREPARE_SMP8 \ SCOPE_GET_INTERPOLATED_SMP8 \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_PREPARE_SMP16 \ SCOPE_GET_INTERPOLATED_SMP16 \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_PREPARE_SMP8_LOOP \ SCOPE_GET_INTERPOLATED_SMP8_LOOP \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_PREPARE_SMP16_LOOP \ SCOPE_GET_INTERPOLATED_SMP16_LOOP \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_PREPARE_SMP8_BIDI \ SCOPE_GET_INTERPOLATED_SMP8_BIDI \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_PREPARE_SMP16_BIDI \ SCOPE_GET_INTERPOLATED_SMP16_BIDI \ smpY1 = lineY - sample; \ SCOPE_UPDATE_READPOS #define LINED_SCOPE_DRAW_SMP \ smpY2 = lineY - sample; \ scopeLine(x, smpY1, smpY2, color); \ smpY1 = smpY2; #define SCOPE_HANDLE_POS_NO_LOOP \ if (position >= s->sampleEnd) \ s->active = false; #define SCOPE_HANDLE_POS_LOOP \ if (position >= s->sampleEnd) \ { \ if (s->loopLength >= 2) \ position = s->loopStart + ((uint32_t)(position - s->sampleEnd) % (uint32_t)s->loopLength); \ else \ position = s->loopStart; \ \ s->hasLooped = true; \ } #define SCOPE_HANDLE_POS_BIDI \ if (position >= s->sampleEnd) \ { \ if (s->loopLength >= 2) \ { \ const uint32_t overflow = position - s->sampleEnd; \ const uint32_t cycles = overflow / (uint32_t)s->loopLength; \ const uint32_t phase = overflow % (uint32_t)s->loopLength; \ \ position = s->loopStart + phase; \ samplingBackwards ^= !(cycles & 1); \ } \ else \ { \ position = s->loopStart; \ } \ \ s->hasLooped = true; \ } #endif