ref: 9de25964fd0da3631675116bd12e700d9779eb4e
dir: /ann/anntrainadam.c/
#include <u.h>
#include <libc.h>
#define fmax(a,b) (a > b? a: b)
#include "ann.h"
static double
torque(double input)
{
if (input < -.9999999)
return -17.0;
if (input > .9999999)
return 17.0;
return log((1.0 + input) / (1.0 - input));
}
Ann*
adaminit(Ann *ann)
{
int i;
Adam *I = calloc(1, sizeof(Adam));
I->rate = 0.001;
I->beta1 = 0.9;
I->beta2 = 0.999;
I->epsilon = 10e-8;
I->timestep = 0;
I->first = calloc(ann->n-1, sizeof(Weights*));
I->second = calloc(ann->n-1, sizeof(Weights*));
for (i = 0; i < (ann->n-1); i++) {
I->first[i] = weightscreate(ann->layers[i]->n, ann->layers[i+1]->n, 0);
I->second[i] = weightscreate(ann->layers[i]->n, ann->layers[i+1]->n, 0);
}
ann->internal = I;
return ann;
}
double
anntrain_adam(Ann *ann, double *inputs, double *outputs)
{
double *error = annrun(ann, inputs);
double ret = 0.0;
int noutputs = ann->layers[ann->n-1]->n;
double acc, sum, m, v;
int o, i, w, n;
Neuron *O, *I;
Weights *W, *D, *D2, *M, *V;
Adam *annI;
if (ann->internal == 0)
adaminit(ann);
annI = ann->internal;
annI->timestep++;
for (o = 0; o < noutputs; o++) {
// error = outputs[o] - result
error[o] -= outputs[o];
error[o] = -error[o];
ret += pow(error[o], 2.0) * 0.5;
error[o] = torque(error[o]);
}
D = ann->deltas[ann->n-2];
weightsinitdoubles(D, error);
for (i = 0; i < (ann->n-2); i++) {
D = ann->deltas[i];
weightsinitdouble(D, 1.0);
}
// backpropagate MSE
D2 = ann->deltas[ann->n-2];
for (w = ann->n-2; w >= 0; w--) {
D = ann->deltas[w];
M = annI->first[w];
V = annI->second[w];
for (o = 0; o < ann->layers[w+1]->n; o++) {
O = ann->layers[w+1]->neurons[o];
acc = O->gradient(O) * O->steepness;
sum = 1.0;
if (D2 != D) {
W = ann->weights[w+1];
sum = 0.0;
for (n = 0; n < D2->outputs; n++)
sum += D2->values[o][n] * W->values[o][n];
}
for (i = 0; i <= ann->layers[w]->n; i++) {
I = ann->layers[w]->neurons[i];
D->values[i][o] *= acc * sum;
M->values[i][o] *= annI->beta1;
M->values[i][o] += (1.0 - annI->beta1) * D->values[i][o] * I->value;
V->values[i][o] *= annI->beta2;
V->values[i][o] += (1.0 - annI->beta2) * D->values[i][o] * D->values[i][o] * I->value * I->value;
}
}
D2 = D;
}
// update weights
for (w = 0; w < ann->n-1; w++) {
W = ann->weights[w];
M = annI->first[w];
V = annI->second[w];
for (i = 0; i <= W->inputs; i++) {
for (o = 0; o < W->outputs; o++) {
m = M->values[i][o] / (annI->timestep < 100? (1.0 - pow(annI->beta1, annI->timestep)): 1.0);
v = V->values[i][o] / (annI->timestep < 10000? (1.0 - pow(annI->beta2, annI->timestep)): 1.0);
W->values[i][o] += (m / (sqrt(v) + annI->epsilon)) * annI->rate;
}
}
}
free(error);
return ret;
}
double
anntrain_adamax(Ann *ann, double *inputs, double *outputs)
{
double *error = annrun(ann, inputs);
double ret = 0.0;
int noutputs = ann->layers[ann->n-1]->n;
double acc, sum, m, v;
int o, i, w, n;
Neuron *O, *I;
Weights *W, *D, *D2, *M, *V;
Adam *annI;
if (ann->internal == 0)
adaminit(ann);
annI = ann->internal;
annI->rate = 0.002;
annI->timestep++;
for (o = 0; o < noutputs; o++) {
// error = outputs[o] - result
error[o] -= outputs[o];
error[o] = -error[o];
ret += pow(error[o], 2.0) * 0.5;
error[o] = torque(error[o]);
}
D = ann->deltas[ann->n-2];
weightsinitdoubles(D, error);
for (i = 0; i < (ann->n-2); i++) {
D = ann->deltas[i];
weightsinitdouble(D, 1.0);
}
// backpropagate MSE
D2 = ann->deltas[ann->n-2];
for (w = ann->n-2; w >= 0; w--) {
D = ann->deltas[w];
M = annI->first[w];
V = annI->second[w];
for (o = 0; o < ann->layers[w+1]->n; o++) {
O = ann->layers[w+1]->neurons[o];
acc = O->gradient(O) * O->steepness;
sum = 1.0;
if (D2 != D) {
W = ann->weights[w+1];
sum = 0.0;
for (n = 0; n < D2->outputs; n++)
sum += D2->values[o][n] * W->values[o][n];
}
for (i = 0; i <= ann->layers[w]->n; i++) {
I = ann->layers[w]->neurons[i];
D->values[i][o] *= acc * sum;
M->values[i][o] *= annI->beta1;
M->values[i][o] += (1.0 - annI->beta1) * D->values[i][o] * I->value;
V->values[i][o] = fmax(V->values[i][o] * annI->beta2, fabs(D->values[i][o] * I->value));
}
}
D2 = D;
}
// update weights
for (w = 0; w < ann->n-1; w++) {
W = ann->weights[w];
M = annI->first[w];
V = annI->second[w];
for (i = 0; i <= W->inputs; i++) {
for (o = 0; o < W->outputs; o++) {
m = M->values[i][o];
v = V->values[i][o];
W->values[i][o] += (annI->rate/(1.0 - (annI->timestep < 100? pow(annI->beta1, annI->timestep): 0.0))) * (m/v);
}
}
}
free(error);
return ret;
}